User Tools

Site Tools


userpages:rainerk:booster-de

Verwendung von Zentrale und Boostern zur Gleisversorgung

Allgemeines

Es werden die grundsätzlichen Bauarten und Eigenschaften von Boostern beschrieben, ohne auf herstellerspezifische Einzelheiten oder Austattungen einzugehen. Schwerpunkte sind allgemeingültige Probleme und mögliche Lösungen, die sich bei dem Betrieb einer Modellbahnanlage mit mehreren Boostern ergeben können.

  • Hinweise:
    • Leistungsstufen von Zentralen- und Booster-Ausgängen haben das gleiche Schaltungsprinzip.
    • Booster-Busse sind z.B. 5pol.-Bus, CDE und LN-RailSync.


Booster-Bauarten

Grundsätzlich wird zwischen Halb- u. Vollbrücken-Boostern (H-/V-Brücke) unterschieden.

Booster mit Halbbrücke

Bei Halbbrücken-Boostern ist der Ausgang z.B. mit zwei Transistoren realisiert. Im Netzteil des Boosters wird je eine Spannung mit Plus- und Minus-Potenzial gegen Masse erzeugt. Der Booster schaltet im Takt des Digitalsignals abwechselnd Plus und Minus an einen Kontakt des 2pol. Gleisausgangs, während an dem andereren Kontakt fest Masse-Potenzial liegt. Halbbrücken-Booster haben von ihrem Eingang bis zum Ausgang eine durchgehende System-Masse. Die Masse aller Halbbrücken-Booster einer Gleisanlage sollte an eine durchgehende, nicht getrennte Schiene geschaltet werden. Die in Hauptfahrtrichtung rechte Schiene bzw. bei Rundkurs die außen liegende Schiene als Masse zu verwenden, gilt als Quasi-Standard. Trennungen der Masse-Schiene sind nur für Kehrschleifen-Abschnitte oder Übergabe-Blöcke erforderlich.
Neuere Halbbrücken-Booster sind oft im Eingang mit Optokopplern ausgestattet, sodass bei vorgesehener Versorgung aus CDE-Bus, RailSync oder Gleisausgang der Zentrale keine durchgehende System-Masse vorhanden. Dann sollten mehrere dieser Booster nur mit geprüfter Polarität und Phase am Gleisnetz betrieben werden. Der Betrieb am alten 5pol.-Bus ist nur bei noch angebotenen älteren Booster-Typen möglich.



Booster mit Vollbrücke

Bei Vollbrücken-Boostern ist der Ausgang mit zwei Halbbrücken, also z.B. mit vier Transistoren realisiert. Im Netzteil des Boosters wird eine Spannung erzeugt, die z.B. Plus-Potenzial gegen Masse hat. Der Booster schaltet im Takt des Digitalsignals abwechselnd Masse und die Plus-Spannung - in den beiden Halbbrücken gegenphasig - an die beiden Kontakte des 2pol. Gleisausgangs. Die Eingänge von Vollbrücken-Boostern sind meistens mittels Optokoppler von der internen Elektronik isoliert. Ausch der Gleisausgang hat durch die beiden Halbbrücken kein festes Masse-Potenzial. Echtes Masse-Potenzial besteht nur innerhalb der Booster-Elektronik und ggf. am Eingang für Rückmeldung über einen Booster-Bus. Für die Anschaltung an die Gleisanlage muss durch eine identische Zuordnung beider Kontakte aller Ausgänge dafür gesorgt werden, dass an den Übergängen der Gleisabschnitte keine entgegengesetzten Polaritäten aufeinander treffen. Bei baugleichen Boostern mit geprüfter Polarität und Phase kann ein Kontakt der Ausgänge an eine durchgehende, nicht getrennte Schiene geschaltet werden. Die an den Ausgängen von Boostern des Vollbrücken-Typs fehlende Masse wird so nachgebildet.
Es muss unbedingt sichergestellt sein, dass für diese Masse bei allen Boostern der Kontakt gleicher Polarität verwendet wird.
Für die Masse sollte die bereits im Abschnitt "Booster mit Halbbrücke" als Quasi-Standard genannte Schiene verwendet werden. Auch hier sind Trennungen der Masse-Schiene nur für Kehrschleifen-Abschnitte oder Übergabe-Blöcke erforderlich.



Booster-Eigenschaften

Signalzeit-Differenz

Die Zeit, die ein Gleissignal für den Weg zwischen Eingang und Ausgang eines Boosters benötigt, wird von dessen Schaltungstechnik bestimmt. Wesentlichen Einfluss haben u.a. Optokoppler und ggf. eine Verarbeitung des Digitalsignals in einem Mikrocontroller, z.B. für einen RailCom-Cutout.

Nur bei baugleichen Boostern kann davon ausgegangen werden, dass bei einem gemeinsamen Eingangssignal aus der Zentrale auch an den Gleisausgängen aller Booster die Zeitpunkte der Flanken von Polaritätswechseln ausreichend gleich sind.

Versorgt z.B. die Zentrale einen Gleisabschnitt und versorgen daran angeschlossene Booster weitere Gleisabschnitte, kann die Signalzeit an Gleisübergängen zwischen Zentralen- und Booster-Bereichen nicht gleich sein. Dann sollte die unten dargestellte Trennung von Zentrale und Boostern gewählt werden, die auch noch weitere betriebliche Vorteile bietet.

Ein gemeinsamer Betrieb von Zentralen-Ausgang und Booster-Ausgängen am Gleisnetz kann ohne Signalzeit-Differenz nur erreicht werden, wenn die Booster aus einem Booster-Bus versorgt werden, den die Zentrale mit kompensierter Signalzeit 1) steuert. Können Booster nur über eine Gleissignal-Ringleitung versorgt werden, ist ein gemeinsamer Betrieb von Zentralen-Ausgang und Booster-Ausgängen am Gleisnetz nur mit Einrichten von Übergabe-Blöcken möglich.

Gleisspannungs-Differenz

Die Spannungen der Gleissignale an den Boosterausgängen sollten so genau wie möglich auf den selben Wert eingestellt sein, damit bei Befahren der Übergänge der Gleisabschnitte keine Ausgleichsströme zwischen den Boostern fliessen können. Das vermeidet auch Änderungen im Fahrverhalten von Loks bei Wechsel der Gleisabschnitte.

Polaritäts- bzw. Phasen-Differenz

Mit Hilfe einer relativ einfachen Prüfung kann festgestellt werden, ob zwei gemeinsam zu betreibende Booster korrekt polarisiert sind.

  1. Zunächst werden beide Booster gemeinsam mit einem Gleissignal versorgt. An den Booster-Eingängen muss unbedingt sichergestellt sein, dass bei dieser Prüfung und später im Betrieb immer die selben Kontakte zusammengeschaltet werden.

  2. Die Ausgangsspannungen beider Booster werden z.B. mit der hier beschriebenen Messschaltung möglichst auf den gleichen Wert eingestellt.

  3. Am Ausgang der Booster wird einer der Kontakte mit dem gleichen Kontakt des anderen Boosters verbunden. Der jeweils andere Kontakt beider Booster bleibt offen. Es muss unbedingt sichergestellt sein, dass bei dieser Prüfung und später im Betrieb immer die selben Kontakte zusammengeschaltet werden.

  4. Mit der o.g. Messschaltung wird die Spannung zwischen den beiden noch offenen Kontakten der Booster-Ausgänge gemessen.

    1. Ist der Spannungswert ca. Null, ist die Polarisierung der beiden Booster i.O.. Die beiden Booster können gemeinsam betrieben werden, wenn die Beschaltung der Kontakte den Prüfungs-Bedingungen entspricht.

    2. Ist der Spannungswert größer als die zuvor eingestellte Ausgangsspannung, ist die Polarisierung der beiden Booster FALSCH. Die Kontakte eines Booster müssen am Eingang oder Ausgang getauscht werden. In jedem Fall ist die Prüfung zu wiederholen, um festzustellen, ob ein Prüfergebins nach 4.a. oder 4.c. erreicht wird.

    3. Ist der Spannungswert deutlich kleiner als die zuvor eingestellte Ausgangsspannung, aber erkennbar größer als Null, ist die Polarisierung der beiden Booster prinzipiell gleich, aber die Booster sind nicht baugleich. Die Booster sollten nur bei Einrichtung von Übergabe-Blöcken gemeinsam betrieben werden.

Weitere Booster können ans Gleisnetz geschaltet werden, wenn sie mit einem als Referenz genutzten Booster geprüft wurden.

Wichtige Hinweise

  • :!: Bei Nichtbeachten der Hinweise können irreparable Schäden an Rollmaterial und Elektronik entstehen, z.B. Totalschäden von Dekodern.
  • In der Regel gehen Betreiber von Modellbahnanlagen davon aus, dass Trennschnitte der Gleise zwischen den Booster-Abschnitten als einzige Maßnahme genügen.
    :!: Nur wenn ausschliesslich baugleiche Booster bei exakt gleicher Beschaltung der Ein- und Ausgänge mit gleich eingestellter Ausgangsspannung verwendet werden, kann auf weitere Maßnahmen verzichtet werden.
  • Grundsätzlich sollten auch bei baugleichen Boostern Überbrückungen zwischen Gleisabschnitten, die mehrfache Stromabnahmen in Zügen (Triebwagen) bewirken können, betrieblich in allen Fällen so kurz wie möglich gehalten werden. Ggf. können schon Bruchteile von Sekunden schädlich sein, da unterschiedliche Zeitpunkte der Signalwechsel von zwei Boostern Spannungsspitzen mit Werten weit oberhalb der normalen Gleisspannung erzeugen können.
  • Bei Einsatz mehrerer Booster muss unbedingt die Phasenlage bzw. Polarität an den Ein- und Ausgängen beachtet werden. Bei Boostern mit Optokoppler(n) im Eingang besteht die Gefahr, dass das Gleissignal unachtsam mit gedrehter Phase zugeführt wird. So entstandene Polaritätsfehler zweier Booster können u.a. zu Kurzschlüssen, hohen Ausgleichströmen und den zuvor erwähnten stark überhöhten Spannungswerten am Gleis führen.
    :!: Vor der Anschaltung eines weiteren Boosters an ein Gleisnetz sollte immer zusammen mit einem bereits betriebenen Booster die Polaritäts- bzw. Phasen-Differenz geprüft werden. Das ist besonders wichtig, wenn z.B. die Anschlüsse von Ein- und Ausgängen nicht eindeutig gekennzeichnet sind oder Unsicherheit dabei besteht.
  • Achtung bei LocNet-RailSync:
    Es gibt evtl. noch ältere "gedrehte" LocoNet-Kabel.

    Ein gedrehtes Kabel versorgt angeschlossene Booster mit vertauschter Polarität des RailSync-Signals.
    Gedrehte Kabel müssen entsorgt oder die Stecker korrekt montiert werden.
  • Nicht rechtwinkelige Gleistrennungen an Segment- oder Modul-Übergängen sind kritisch, wenn dort auch die Trennung von Gleisabschnitten zweier Booster vorgesehen ist. Einer der Gleisabschnitte sollte ein Stück in das benachbarte Segment oder Modul verlängert werden, damit ein rechtwinkliger Trennschnitt erfolgen kann. Die elektrische Verbindung zur Verlängerung nicht vergessen.
  • :!: In ungünstigen Fällen oder bei Unsicherheit sollte die in den Empfehlungen dargestellte Einrichtung von Übergabe-Blöcken als betriebssichere Lösung gewählt werden.


Empfehlungen

:!: Für die praktische Realisierung der Empfehlungen liegt die Verantwortung ausschliesslich beim Anwender.

Trennung von Zentrale und Boostern

Ist das Gleisnetz einer Modellbahnanlage in mehrere Abschnitte aufgeteit, die von der Zentrale und ein oder mehreren Boostern versorgt werden sollen, muss berücksichtigt werden, dass der Signalweg von der Zentrale über die Elektronik der Booster eine Signalzeit-Differenz wischen dem Zentralen-Ausgang und den Booster-Ausgängen verursacht.
Deshalb ist es besser, das Gleissignal des Zentralen-Ausgangs nur in eine vom Gleisnetz getrennte Ringleitung einzuspeisen.

Wenn die Zentrale keinen Booster-Bus besitzt, versorgt die Ringleitung die Booster und die Zubehördekoder mit dem Gleissignal.
Ist ein Booster-Bus vorhanden, versorgt dieser die Booster mit dem Gleissignal. Die Zubehördekoder sollten immer aus der Ringleitung versorgt werden.

Diese Signalführung stellt sicher, dass alle Gleisabschnitte bei Verwendung baugleicher Booster mit identischen / synchronen Gleissignalen versorgt werden.
Außerdem ergibt sich mit dieser Struktur die Möglichkeit zu einem besseren Kurzschluss-Management. Dabei wird nur der vom Kurzschluss betroffene Gleisabschnitt vom Booster abgeschaltet, während die von der Zentrale über die Ringleitung versorgten Dekoder und andere Booster betriebsbereit bleiben. Laufende Stellvorgänge, z.B. von Weichen, können dann ungestört zu Ende ausgeführt werden und die Anlage befindet sich weiterhin in einem definierten Zustand.
Mit einer Kurzschluss-Rückmeldung an Rocrail kann ein globaler Befehl zum Nothalt ausgelöst werden. Damit werden Havarien mit Rollmaterial zu verhindert, dass wegen des Kurzschlusses unkontrolliert stehen blieb.
Die Rückmeldung kann je nach Ausstattung über den Booster-Bus oder das reguläre Rückmeldesystem erfolgen.


Es können ggf. weitere Maßnahmen erforderlich sein.
Siehe nachfolgende Hinweise.

Baugleiche Booster

Es sollten möglichst nur Booster gleichen Typs verwendet werden. Dass alle Eigenschaften (V- oder H-Brücke, Signalzeit, Gleisspannung usw.) bei unterschiedlichen Bauarten zueinander passen, ist nur selten realisierbar.

Booster-Abschnitte allpolig trennen

An Übergängen von Booster-Abschnitten sollten beide Schienen und ggf. Mittelleiter getrennt werden. Sind Booster polaritätsgeprüft kann die Trennung der Masse führenden Schiene(n) entfallen, wenn sichergestellt ist, dass keine überhöhten Werte der Gleisspannung, z.B. durch Signalzeit-Differenzen, auftreten können.

Übergabe-Blöcke einrichten

In kritischen Fällen, insbesondere bei Boostern unterschiedlicher Bauart, sollten Übergabe-Blöcke eingerichtet werden, deren Versorgung allpolig zwischen den beiden Boostern umgeschaltet werden muss. Das kann z.B. mit 2pol. Umschaltrelais über Dekoder erfolgen, die passend zu den gerade aktiven Ein- und Ausfahrseiten der Übergabe-Blöcke per Fahrstraßen-Befehlen (Ausgangs- oder Weichen-Objekte) geschaltet werden.
Altetnativ kann ein Übergabe-Block wie eine Kehrschleife mit Sensoren betrieben werden. Das hat den Vorteil, dass der Block auch im manuellen Betrieb in der jeweiligen Fahrtrichtung automatisch korrekt umgeschaltet wird. Umschaltungen, wie sie noch bei Kehrschleifen mit "klassisch rustikaler Kurzschluss-Erkennung" verwendet werden, gehören nicht in einen Übergabe-Block, sondern ins Museum oder die Altstoffverwertung.

1)
Das Gleissignal für den Bus wird in der Zentrale vor der Elektronik der Leistungsstufe abgezweigt.
userpages/rainerk/booster-de.txt · Last modified: 2020/05/24 05:24 by rainerk